
How to create a ball that rotates when it moves, even if is scaled, squashed

or stretched (by Marti Escageda)

In this tutorial we’ll create a ball that can be squashed and stretched, is always on

top of the floor when its size changes, and that has rigging so it rotates according

to the direction is going.

This will save A LOT of work when you’re animating a circular object, and this is

coming from someone that used to animate everything without rigging, I know what

I’m talking about…

The first step is to open 3ds Max and create the ball (obviously XD).

You go to the Command Panel -> Create Menu -> Standard Primitives -> Sphere

Then create the sphere in the center of the world, and let’s change its name to

“Ball”.

Remember that when modeling anything, it’s a good practice to do it in center of

the world and name everything at the beginning; this can save you many future

problems.

Now assign a material to our ball, so we notice when we rotate it. So you go to the

Main Toolbar and click on the Material Editor icon.

In the Material Editor window, choose any material and then go to Basic

Parameters and click on the button at the right of Difusse.

In the Material Browser you select checker.

Then you select the ball and assign the material clicking on “Asign Material to

Selection”. Remember to have the selected the option of “Show Standard Map in

Viewport” so you can see it.

Now let’s create a “floor” for the ball.

You go to the Command Panel -> Create Menu -> Standard Primitives -> Plane

and create the plane on the center of the stage and name it “Floor”.

Also, let’s move the ball over the floor… All this just so it looks nice ☺

Now, in order to always keep the ball on the floor, you need to use Wire

Parameters. So you select the ball and then go to:

Main Toolbar -> Animation -> Wire Parameters

A menu appears in the viewport, you select

Transform -> Position -> Z Position

Then a dotted line appears. You click on the ball and select

 Object (Sphere) -> Radius

A the Parameter Wiring window appears, click on the “<----“ button on the middle,

and then click the connect button.

Close the window and try changing the radius of the ball in the Modify Panel of the

Command Panel. You’ll notice that the ball is still over the floor. This is because its

position in the Z axis depends on its radius, so it’ll change according to it.

If you change the pivot point of the ball in the Hierarchy Menu, you’ll notice that the

ball moves, but the pivot stays in the same place. It’ll be as high as the radius.

Now try moving the ball up or down. You can’t. That’s because the Z Position of

the ball is “wired” to the radius of the ball and will always be in the center of the

ball.

So in order to move the ball up and down, we need a “parent” object, so the ball

moves following its “dad”. That’s why we have the floor!

Just go to the Main Toolbar and click on “Select and Link”.

Click on the ball, keep the mouse button pressed and release it on the floor.

Now the floor is the ball “dad”. You’ll notice that when you move the floor, the ball

also moves, but you still can move the ball independently. Is not “wired” like its Z

Position, only “linked”.

You can still move the ball independently. But of course, when animating you’ll

save yourself a lot of trouble by moving the floor instead of the ball; but you

wouldn’t want the floor showing up on the final render. So right click on the ball and

select Object Properties.

And the uncheck the rendereable option.

Well, you can change the ball radius and move it up and down and to the sides, but

there’s still one problem, it doesn’t rotate like a normal ball would…

Now, there is a way to translate the ball on the X Axis while making it rotate on its

Y Axis and vice versa. This is done adding assigning controllers and using our little

friend Max Script so that a change in X Position makes a change in Y Rotation.

The problem is that when it comes to animating the ball in a rotating in a diagonal

trajectory, both axis move. You see, 3ds Max uses Euler in order to rotate the

objects.

To see how it works, click on the Rotate icon on the Main Menu and click on the

ball.

Now let’s animate the ball spinning. Select the ball, go to the Time Slider menu,

and click on “Auto Key”. Then move the time slider to frame 50, and rotate the ball

while clicking it and moving the mouse while keeping the mouse button pressed.

Rotate it 90° on its X Axis and 90° on its Z Axis.

Now play the movie by clicking the Play button on the time controls.

You’ll see that the ball doesn’t move directly from position A to B. That’s because

both Euler move in order to get that position.

What we need is a quaternion. That’s an imaginary axis that accommodates so the

ball reaches the desired position as soon as possible. In order to do this, you need

to change the ball rotation from Euler XYZ.

As an example to see this, select the ball and open the Mini Curve Editor next to

the Time Slider.

Now, by clicking on the Editor you can go down to the ball Rotation. Right Click on

it and select Assign Controller.

Select TCB Rotation and click OK.

Now you’ll notice that the ball rotates nicely when you play the animation.

What we want is to get that imaginary axis when we move the floor so the ball

rotates according where the ball is going. In reality, a quaternion will be rotating

according to a “vector”. It’s like an arrow pointing where the ball is going, and so

our rotating axis will be perpendicular to that direction.

Also, according to the speed of the vector will be the rotation of the ball. So if you

go a certain distance in an animation, and then you edit it to go farther away in the

same time, the ball will rotate more times. Plain and simple, huh?

For this we need the help of action script. So, go back to the ball rotation in the

Curve Editor, and now assign the Rotation Script Controller.

A window will appear. On the Expression space, type this code (I’ll explain it later):

obj = $Ball
timeres = 1f

fn getrot t =
(
 if t<=0f then return quat 0 0 0 1 -- t=0 => no rotation
 t0 = t-timeres -- previous frame time
 t1 = t -- current time

 rot0 = getrot(t0) -- previous rotation:

 p0 = at time t0 obj.position-- previous position
 p1 = at time t1 obj.position-- current position
 if(p0==p1) then return rot0 -- no distance is traveled

 dif = p1-p0 -- difference in positions
 len = Length(dif) -- distance that's traveled
 vec = dif / len -- normalized movement vector.

 r0 = at time t0 obj.radius -- previous radius
 r1 = at time t1 obj.radius -- current radius

 rotax = cross vec [0, 0, 1] -- rotation axis
 angle = 360*len/((r0+r1)*pi)-- rotation amount (in degs)
 rotdif = quat angle rotax -- rotation from t0 to t1
 rot1 = rot0 + rotdif -- total rotation
)

getrot(currentTime)

Click on Evaluate and close the window. Now try animating the floor. When you

move it, noting happens. But press the Auto Key, go to the 50 and move the floor

diagonally.

Play the animation and voila!

You can see the ball rotating just like we want to. But of course, you can’t see that

in the picture…

The code works this way. First we need to get the ball’s position at a certain time.

That’s when we use this:

p0 = at time t0 obj.position

p1 = at time t1 obj.position

t0 is the previous frame time, and t1 is the current time. After getting the positions

of current and previous frames, we can determine the direction of movement by

subtracting the positions. Is this line of code:

dif = p1-p0 -- difference in positions

We can find the unit vector by dividing it to the length of the vector. Also note that
length of that vector is the distance that the ball is travelled.

len = Length(dif) -- distance that's travelled
vec = dif / len -- normalized movement vector.

With that we got where the ball is going at what speed, distance and direction. We

still need the right rotation axis, and here comes this line:

rotax = cross vec [0, 0, 1]

We know that the rotation axis is perpendicular to the movement vector; and also,

we can say that the force that the ground applied to the ball is in up direction (+Z

vector). The rotation axis should be perpendicular to that vector too. So we need to

find a vector which is perpendicular to both vec and Z vectors. So if take cross

product of those two vectors we'll find the vector we are seeking.

In order to get how much the ball is rotating, we need to do an operation according

to its circumference. If the ball rotates a full turn, it'd travel a distance equal to its

circumference. As you know the circumference of circle is 2*pi*r. So the rotation

angle (in degrees) that is required to travel len distance is.

angle = 360*len/((r0+r1)*pi)

The “r0+r1” operation allows an animation of the ball spinning and changing its size
at the same time. How cool is that?

Now the quaternion is built with this line:

rotdif = quat angle rotax

By using the rotation axis (rotax) and the rotation amount (angle). Max Script has a

Quaternion constructor which requires just those two values.

I want to thank Cuneyt Ozdas for this code. A got it here:
http://www.cuneytozdas.com/tutorials/maxscript/

So, you have a nice rotating ball that can change its size. But, how about changing
its shape?

There are two ways of doing this. One is using the modifier “stretch”. But that one
is limited to the modifier in itself, I mean it only stretches in a certain way.

The other one is using morphers, this way you can give the ball any shape you
want.

But first, you have to reshape the vertexes of the ball, and that’ll be with the help of
a FFD Box.

Go to the Command Panel -> Create Menu -> Space Warps

Choose Geometric/Deformable and the click FFD(Box)

Once you create it, let’s make its size bigger than the ball. But remember, the ball

can change its radius. So, you need to make the FFD Box wired to the radius of

the ball, but making it somewhat bigger.

Select the FFD Box, Open the Mini Curve Editor and go all the way down to the

length, height and width of the ball. Select length, click on assign controller and

choose Float Expression, then OK.

Now, you need to create the variable ballRadius. Create it, and then click on assign

Controller, and go to object ball and click on radius.

Now write the expression (ballRadius*2)+10, this way it’ll always be bigger of the

ball, so we won’t have problems when reshaping and resizing it later.

Click on evaluate, and you’ll notice how it gets that size. Now, copy and paste the

controller to the expression by right clicking on length on the Mini Curve Editor,

select click copy, then select width, right click and paste.

A window will appear, choose paste as copy. Do the same steps for the height

property.

Now align the FFD Box with the ball. Select the FFD Box, then click on the align

button on the Main Toolbar and select the ball.

A window will appear, select all the axis, choose align the pivot points, and click

OK.

The FFD is aligned with the ball, but if you make the ball bigger, you’ll notice that

the FFD Box gets bigger, but doesn’t goes up with the ball. Remember that the Z

Position of the ball is according to the position of the floor. So you need an

expression that tells the FFD Box to go up and down depending on the floor.

Select the FFD Box, Open the Mini Curve Editor, select its Z Position, right click

and select “Assign Controller”. Choose Float Expression and click OK.

Create the variables FloorZPosition and ballRadius. Select the variable ballRadius,

click on Assign to Controller, and go to ball -> Object -> Radius.

Now select the variable FloorZPosition, click on Assign to Controller, and go to

Floor-> Transform -> Z Position.

The write this code on the expression window: FloorZPosition+ballRadius. Click on

evaluate and you’ll see how the FFD Box follows the ball accordingly.

The FFD Box will be aligned with the ball all the time, but it’ll have a little space

under it, allowing reshaping it without problems.

Now comes the reshaping part. Duplicate the FFD Box by clicking on it, keep shift

and the mouse button pressed and move the cursor.

Once you release the button, Select the Copy option, name if FFD Morpher and

click OK.

Now go to the Modify Panel in the Command Panel, Select the FFD Box Control

Points and move them stretching the box.

Now select the original FFD Box, go to the Modify Panel, and scroll down the

modifier list and select Morpher.

Now click on the button “Select Object From Scene” and select the FFD Box clone.

Hey, the ball doesn’t change… Oh, wait a moment, we still haven’t linked the ball

to the FFD Box! This is easy, just click on Bond to Space Warp on the Main

Toolbar, click and hold the button on the ball, and release it on the FFD Box.

Now you’ll see that the ball now stretches changing its value on the Channel List.

In order to squash the ball, go to Global Parameters, and make the minimum limit

“-100”.

There’s still one more thing. The FFD Box must move according to the floor. So

let’s wire it’s X and Y positions. Select the FFD Box, go to Animation -> Wire

Parameters, then choose Transform -> Position -> X Position.

The dotted line appears, click on the floor and choose Transform -> Position -> X

Position.

Now click on the “<----“ button on the middle, and then click the connect button.

Do the same for the Y Position and… That’s it!

Try animating the ball with a weird shape and you’ll see it moving nicely in every

direction.

I hope you like this tutorial, it’s my first one and I try to make it as simple as I could

so anyone could do it, even if it barely knows the tools of 3ds Max.

Thanks for reading, and have a nice day ☺

