
A solution for 3ds max

How to do:

Making a 3d Egg, translating and rotating it in

MaxScript.

Made by: Ricardo Sánchez Encinas

Ciudad Obregón, Sonora, México

23/05/2010

A project made for my animation class.

Ulsa Noroeste

Introduction:

This is the explication of the process of how the

egg was made. This is not an explanation of the

code. You can see the code in

http://www.scriptspot.com/3ds-max/scripts/egg-

maker-a-rigged-egg-with-scripting, download the

installer, install it and open the code generated in

the rotation script, position script and the macro

file.

The basic logic of how to make the shape and the

rig is in this file. It’s recommended to know

about Analytic geometry and quaternion before

read this how-to.

Have the code open at the same time when you

read this document will be useful.

The beginning (Making the poly):

 I had to create the shape of the egg, but it won’t

be simple as create a sphere and modify this

shape for making an egg. It’s possible to create

eggs in this way but it is not what I need for this

case.

It’s necessary to make an egg with a formula for

make totally controlled egg. There are a lot of

formulas which can be used for describing the

form of an egg like parabolas, circles, ellipses,

hyperbolas (conic sections). For this case, the

different halves of ellipses will be used. Because

they look like an egg and they can be connected

easily and parabolas can’, the same problem for

hyperbolas and circles can’t describe an egg.

After decide which formula will be used. It’s time

to make an empty editable poly with maxscript

(It’s not possible, but it’s possible to create an

editable_mesh and convert it to Editable_Poly).

When it is created, the vertexes have to be

added. The vertexes’ position will be calculated

with the formula of the ellipse.

𝑥2

𝑎2
+

𝑦2

𝑏2
 = 1

Two different halves are necessary for the egg. A

half for positive values in Z and one for negative

values have to be added. The formula has to be in

a canonical form (y = …) and y in this case will be

z. The two halves have to have the same ‘a’, but

different ‘b’, the upper half will have a bigger ‘a’

than the bottom half. And then the shape of the

egg is ready, with 2 different half of ellipses.

But do not forget that a 3d poly is making, not

just a 2d shape. Then it’s necessary to use a loop

for generating a cloud of vertexes that will be

united later. A quarter of the ellipse is better for

do that than the half.

And now the vertexes of the upper half are ready

for making the polygons. For connecting the

vertexes, they have to be in a bidirectional array

with loops and rings. With a loop in a loop and

this array, it’s possible to transform the cloud of

vertexes in the upper part of an egg. The main

http://www.scriptspot.com/3ds-max/scripts/egg-maker-a-rigged-egg-with-scripting
http://www.scriptspot.com/3ds-max/scripts/egg-maker-a-rigged-egg-with-scripting

loop is for acceding to the horizontal circles and

the loop inside is for the vertexes in it.

See the code of the macro script (lines 40-48)

Almost all of the polygons can be created with

this loops, but not every polygon. After those

ones, another loop is necessary to close the egg

(line 47). This loop can be the same than the loop

for acceding to the circles of vertexes as it is in

the code.

A circle is empty in the upper side of the egg.

Close it with another loop is necessary; the

procedure will be different, because it’s not made

of quadrangles like the rest of the egg. This will

be made of triangles. (Line 50-51)

The same problem will occurred with the last

triangle. But a loop will not be necessary because

it’s just one triangle to make.

And the same procedure will follow for the

bottom part of the egg. Just the ‘b’ will change

and it won’t be positive, it will be negative.

And now, all the polygons have to have the same

smoothing group, because eggs don’t looks like

the last image.

And the egg is ready. But it has much resolution

in the extremes but not in the in the half. That is

because we have used a linear equation for the x

coordinate of the vertexes. The solution is to use

a not linear expression. In this case a quadratic

equation is used. (Line 24)

𝑏𝑎𝑑 𝑟𝑒𝑠𝑢𝑙𝑡 𝑥 = 𝑡

𝑏𝑒𝑡𝑡𝑒𝑟 𝑟𝑒𝑠𝑢𝑙𝑡 𝑥 = 𝑡2

2D Rotating and translating:

It’s not the main topic of the project, it’s just for

understand wha will happen in 3D rotation and

translation.

It is explained for X axis and Z axis.

The easiest part of that is rotating, it’s not a big

trouble. It is just taking the X coordinate and

divide it by the radius of the the egg (‘a’ value

when we create the egg). And it’s enough. It

won’t be exactly because b ≠ a. But it is not bad,

it will be a nice effect in the final motion.

Now the egg is ready for rotating when it is

moving in X axis.

The real problem is that eggs can’t be inside the

table.

If we rotate it manully it will take many hours to

avoid this problem. That is why this script exists.

The egg was created with math formulas because

we want to know this shape everytime. That is

what let us fix this problem.

With a simple Sine of the angule of rotation we

can know the the a valid X to introduce in the

formula of the ellipse, and with it, it’s posible to

get the X coordinate.

After getting those coordinate, the height of the

egg in one point could be calculated.

𝑥 = 𝑠𝑖𝑛(𝜃) ∗ 𝑎

𝑦 = 1 −
𝑥2

𝑎2
 𝑏2

𝑥2 + 𝑦2 = ℎ𝑒𝑖𝑔ℎ𝑡2

And now the problem of rotating the egg in

2D is solved.

Just remember that we have 2 different b in

the shape. We have to validate if the egg

have the upper part down or the bottom

part. (Example: if (ang >90 and ang <270) then

Calculate with b of upper part else …)

3D Rotating and translating:

It’s working in a 3d software, then the 2d

solution is not enough.

The problem here will be much greater than in 2d

because Euler rotation was good for 2d. But Euler

do not work properly in 3d. Then quaternions

have to be used. And they are not a simple

number, they are hypercomplex with one real

dimension and 3 imaginary.

The egg have a dummy as a parent, because it

will be useful for controlling it, and the dummy

can be controlled by a ray and the egg could be

used in not linear surfaces.

For rotating the egg in every direction. Euler will

be useless. The very short code for rotating in 2d

will become in a long code. For read it, generate a

rigged egg and then open the rotation script in it.

The coide is commented with the explanation.

But in simple words. The solution is:

First we have to get the actual position of the

egg, and compare it with the position in the last

frame. Calculate the distance between these two

points, calculate a normal vector of this distance.

And now, with the calculated distance, the angle

to rotate can be calculated in the same way than

2d (distance/radius). Create a new quaternion

structure with these values (quat ang

normal_vector) and the difference of rotation for

the new frame is calculated. Adding the

difference to the last frame rotation will be

enough for knowing the actual rotation.

But remember that avoiding the collition with the

surface is necessary.

The point of touching of the egg and the surface

will be the pivot or center of the dummy.

See the code in the position script of the egg.

(Just the important lines are commented)

As in 2d, distinguish the part which is down is

important.

Remember that the rotation is in quaternions.

And it is in 3d, that means that the angle in

quaterion is not useful for the equation.

And it’s necessary to calculate a vector that

rotate with the egg, it can rotate many times

tought the surface of the egg in different curves

with big angle or an unusual vectors, but at the

end it will have a final value that will be useful for

calculating the rotation.

In this image the vector for calculating the final

angle is the blue, and the red is a static vector.

The pyramid is a meter that indicate the

difference between the angle of the red and the

blue vector.

The value of the meter grow when the blue

vector is far of the red vector.

This angle that indicate the meter is calculated

with a dot product of the red and the blue vector.

This new angle is the angle which will help us to

know the final 2d rotation of the egg. This angle is

ready for be introduced in the same formula of

2d position.

And now the egg can rotate in any direction(X

and Y) and its rotation can be calculated and the

position in Z too.

As in the images.

Thanks for reading.

